FemtoLAB All-in-one R&D platform for laser micromachining

FemtoLAB is a femtosecond laser micromachining workstation. A perfect choice for scientific laboratories and R&D centers requiring custom solutions for various tasks.

FemtoLAB laser workstation offers combined laser micromachining processes at a submicron resolution and can perform a variety of applications.

Key applications:

  • Surface and volume micro- and nano- structuring
  • Femtosecond laser ablation (FSLA)
  • Laser grooving
  • Multiphoton polymerization (MPP) | direct laser writing (DLW)
  • Laser cutting & drilling
  • Uniquely, the system is compatible not only with planar samples but supports optical fibers machining as well.

FemtoLAB main features

  • Fabrication of complex objects with submicron resolution
  • High-speed and ultra-high precision micromachining
  • Efficient beam delivery and power control
  • High-end industrial-grade femtosecond laser
  • High-performance galvanometer scanners
  • Object movement and laser pulse synchronization in time and space
  • Unique software interface controlling all hardware units

Benefits

  • All-in-one platform
    A workstation is designed to perform several applications, not just one
  • Combined processes
    A single workstation has integrated additive and subtractive process capabilities
  • Full support
    We will install the workstation at your premises and train your team
  • References
    Our systems are installed in a diverse range of businesses, research universities, and organizations
  • 1 Year Warranty
    And after-warranty service

FemtoLAB Customers

FemtoLAB is chosen by the researchers from the world's top universities and R&D centers

  • Open website
    Centre technologique Optique & Lasers ALPhANOV, Bordeaux
    Show the usage
  • Open website
    University of Applied Sciences, Upper Austria
    Show the usage
    Applications:
    • 3D direct laser writing – multiphoton polymerization (MPP)
    • Surface micro and nano structuring
  • Open website
    Techniche Universitat Berlin

    QS Universities rating: #158

    Show the usage
    Applications:
    • 3D direct laser writing – multiphoton polymerization (MPP)
  • Open website
    Indian Institute of Technology Bombay

    QS Universities rating: #172

    Show the usage
    Applications:
    • Two-photon polymerization
    • 3D direct laser writing
    • Surface micro- and nano-structuring
    • Selective laser ablation
    • Micro cutting and drilling any material
  • Open website
    Delft University of Technology

    QS Universities rating: #61

    Show the usage
    Applications:
    • Acoustic sensor fabrication
  • Open website
    Technische Universität Dresden

    QS Universities rating: #200

    Show the usage
  • Open website
    Guilin University of Electronic Technology, China
    Show the usage
    Applications:
    • 3D direct laser writing – multiphoton polymerization (MPP)
  • Open website
    Shanghai Jiao Tong University

    QS Universities rating: #46

    Show the usage
    Applications:
    • Surface micro and nanostructuring
    • Selective laser ablation
    • Micro cutting and drilling
    • Photo-induced etching
    • 3D direct laser writing
    • Waveguide for quantum computing fabrication (separate system)
  • Open website
    University of Southampton, UK

    QS Universities rating: #78

    Show the usage
    Applications:
    • Nanogratings witing
  • Open website
    Swinburne University of Technology

    QS Universities rating: #296

    Show the usage
    Applications:
    • SERS sensors fabrication
  • Open website
    Texas A&M University

    QS Universities rating: #164

    Show the usage
    Applications:
    • Surface micro and nano structuring
    • Selective laser ablation
    • Micro cutting and drilling
    • Photo-induced etching
    • 3D direct laser writing
  • Open website
    Tokyo Institute of Technology

    QS Universities rating: #55

    Show the usage
    Applications:
    • 3D direct laser writing – multiphoton polymerization (MPP)
    • Surface micro and nano structuring
  • Open website
    Politechnico di Torino, Italy

    QS Universities rating: #325

    Show the usage
    Applications:
    • FBG writing
  • Open website
    Tsinghua University

    QS Universities rating: #14

    Show the usage
    Applications:
    • Surface micro and nano structuring
    • Selective laser ablation
    • Micro cutting and drilling
    • Photo-induced etching
    • 3D direct laser writing
  • Open website
    University of Science and Technology of China

    QS Universities rating: #94

    Show the usage
    Applications:
    • Surface and volume micro and nano structuring
    • Selective laser ablation
    • Micro cutting and drilling, any material
    • Two-photon polymerization
  • Open website
    Xi’an Technological University
    Show the usage
    Applications:
    • MEMS applications
  • Open website
    Wuhan University

    QS Universities rating: #194

    Show the usage
    Applications:
    • 3D direct laser writing
    • Selective laser ablation
    • Micro cutting and drilling, any material
    • Surface micro and nano structuring
  • Open website
    Institute for Systems and Computer Engineering, Technology and Science, Portugal
    Show the usage
Show More

Technical specifications

Parameter Value
Recommended materials All materials: glass, sapphire, silicon, ceramics, metal, plastic, optical fibers etc.
Laser High power ultrashort pulse IR, Green, UV laser
Optical path selection Automated
Samples size Compatible with up to 160 mm x 160 mm designs
Smallest feature size 200 nm
Positioning system XYZ mechanical axes, positioning accuracy +- 0.3 μm featuring continuous wafer level patterning
Scanning system Galvo system for all laser wavelengths
Vision Real-time visualization and positioning camera with feature recognition
Metrology Integrated microscope
Sample handling Manual with automatic alignment
Holder Sample holder for flat structures (vacuum suction based) with additional holder for optical fibers
Fume extraction system Included
Accessories Power control, polarization state control
Software Entire system control via single GUI.
Supported file formats – 2D/3D model import: STL, DXF, DWG, AMF, PLT, FAB
– Bitmap support: BMP, GIF, JPG, JPEG, PNG
– Text files as a table array: TXT, RTF, TEX
Software Granite base with passive vibrations isolation, built on an optical table (optional stand-alone design)
Construction Water-cooled laser, air-cooled system, and electrical cabinet
Dimensions, mm
(L x W x H)
1500 x 1350 x 1400
Weight 1100 kg
Power supply 2x 220 VAC, 16 A

Customer review

  • “After 10 years of experience, working with your femtosecond system, my honest opinion is more than positive and we are satisfied with the product. Compared to other systems, ours “full optional facility” allows us to explore valuable processing on many different materials. This is an added value for the research in IIT!”
    Luigino Criante
    Technology Researcher
    Istituto Italiano di Tecnologia Genoa, Italy

Download FemtoLAB brochure

We deliver a full-service solution

References

  1. Mazule; S. Liukaityte; V. Sabonis; T. Gertus; M. Mikutis, et al. “Characterization of the optical components fabricated by femtosecond pulses in transparent materials”, Proc. SPIE 8839, Dimensional Optical Metrology and Inspection for Practical Applications II, 883909 (September 6, 2013); doi:1117/12.2022823
  2. Adomavičiūtė; T. Tamulevičius; L. Šimatonis; E. Fataraitė-Urbonienė; E. Stankevičius; S. Tamulevičius, “Microstructuring of electrospun mats employing femtosecond laser”, ISSN 1392–1320 Materials Science (Medžiagotyra), Vol. 21, No. 1. 2015; doi:http://dx.doi.org/10.5755/j01.ms.21.1.10249
  3. Malinauskas; S. Rekštytė; L. Lukoševičius; S. Butkus; E. Balčiūnas; M. Pečiukaitytė; D. Baltriukienė; V. Bukelskienė; A. Butkevičius; P. Kucevičius; V. Rutkūnas; S. Juodkazis, “3D Microporous Scaffolds Manufactured via Combination of Fused Filament Fabrication and Direct Laser Writing Ablation” Micromachines 2014, 5, 839-858; doi:3390/mi5040839
  4. Gertus; A. Michailovas; K. Michailovas and V. Petrauskienė “Laser beam shape converter using spatially variable waveplate made by nanogratings inscription in fused silica”, Proc. SPIE 9343, Laser Resonators, Microresonators, and Beam Control XVII, 93431S (March 3, 2015); doi:1117/12.2075869
  5. Mačiulaitis; M. Deveikytė; S. Rekštytė; M. Bratchikov; A. Darinskas; A. Šimbelytė; G. Daunoras; A. Laurinavičienė; A. Laurinavičius, R. Gudas; M. Malinauskas; R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography”, Biofabrication, 2015 Mar 23; 7(1):015015; doi:1088/1758-5090/7/1/015015
  6. Nava; R. Osellame; R. Ramponi; and K. Chaitanya Vishnubhatla; “Scaling of black silicon processing time by high repetition rate femtosecond lasers,” Opt. Mater. Express 3, 612-623 (2013). doi:1364/OME.3.000612
  7. Daeichin et al.; “A Broadband Polyvinylidene Difluoride-Based Hydrophone with Integrated Readout Circuit for Intravascular Photoacoustic Imaging”, Ultrasound in Medicine and Biology , Volume 42 , Issue 5 , 1239 – 1243 (2016). doi:http://dx.doi.org/10.1016/j.ultrasmedbio.2015.12.016 
  8. Bruzauskaite et al.; “Relevance of HCN2-expressing human mesenchymal stem cells for the generation of biological pacemakers,” Stem Cell Research & Therapy, 7:67 (2016). doi:10.1186/s13287-016-0326-z
  9. W. Wang et al.; “Laser structuring for control of coupling between THz light and phonon modes”, arXiv:1605.04493 (2016). doi:arXiv:1605.04493
  10. Tamulevičius, L. Šimatonis, O. Ulčinas, S. Tamulevičius, E. Žukauskas, R. Rekuvienė, L. Mažeika et al. “Micromachining and validation of the scanning acoustic microscope spatial resolution and sensitivity calibration block for 20–230 MHz frequency range”, Microscopy (Oxf) Volume 65 (5), 429-437 (2016). doi:https://doi.org/10.1093/jmicro/dfw027
  11. Ksenia Maximova, Xuewen Wang, Armandas Balčytis, Linpeng Fan, Jingliang Li, and Saulius Juodkazis at al. “Silk patterns made by direct femtosecond laser writing”, Biomicrofluidics 10 (5), 054101 (2016). doi: http://dx.doi.org/10.1063/1.4962294
  12. Xuewen Wang, Aleksandr Kuchmizhak, Etienne Brasselet, Saulius Juodkazis, et al. “Dielectric geometric phase optical elements from femtosecond direct laser writing”, arXiv:1612.04487 (2016). doi:https://arxiv.org/abs/1612.04487
  13. W. Wang, A. A. Kuchmizhak, X. Li, S. Juodkazis, O. B. Vitrik, Yu.N. Kulchin, V. V. Zhakhovsky, P. A. Danilov, A. A. Ionin, S. I. Kudryashov, A.A. Rudenko, N. A. Inogamov at al. “Laser-induced Translative Hydrodynamic Mass Snapshots: mapping at nanoscale”, arXiv:1703.06758 (2017). doi:http://arXiv:1703.06758
Contact us

Send us a message

  • Don't hesitate to ask, we usually reply in 24 hours or less!
  • This field is for validation purposes and should be left unchanged.

Contact
information

WORKSHOP OF PHOTONICS
Mokslininku st. 6A, Vilnius, LT-08412, Lithuania

Phone: +370 5 215 7551
E-mail: [email protected]

Company details

Altechna R&D, UAB
Company code 301502628
VAT code LT100006155012
Bank – SEB 70440
LT87 7044 0600 0770 8092