FemtoLAB Laser workstation for laboratories and R&D centers

FemtoLAB is a femtosecond laser micromachining workstation. A perfect choice for scientific laboratories and R&D centers, requiring custom solutions for various tasks.

Main features

  • Fabrication of complex objects with submicron resolution.
  • High speed and ultra-high precision micromachining.
  • Efficient beam delivery and power control.
  • High-end industrial-grade femtosecond laser.
  • High-performance galvanometer scanners.
  • Object movement and laser pulse synchronization in time and space.
  • Unique software interface controlling all hardware units.

Benefits

  • Custom Build
    Every workstation is built according to the exact result you want to reach
  • Upgradeable
    You can add additional functionalities over time
  • Flexible
    One workstation can make several applications, not one
  • Full Support
    We will install workstation at your premises and will train your team
  • References
    Our systems are installed in diverse businesses, research universities, and organizations.
  • 2 Years Warranty
    And service afterward

Detailed description

FemtoLAB is a perfect choice for scientific laboratories and R&D centers, requiring custom solutions for various tasks.

It is an entire laser laboratory on an optical table – equipped with a high-end industrial-grade femtosecond laser, high accuracy linear positioning stages, high-performance galvanometer scanners, and versatile micromachining software SCA.

Our long-term expertise allows optimizing FemtoLAB workstation to save experiment time and facilitate the training of new users. It becomes very important for laboratories with more researchers.
FemtoLAB flexibility allows us to expand and upgrade the system when new requirements arise.

Principle configuration

  • Laser source
  • Sample positioning system
  • Beam delivery and scanning unit
  • Laser power and polarization control
  • Software for system control (autofocusing and machine vision on request)
  • Sample holders and special mechanics (sample handling automation on request)
  • Optical table
  • Enclosure (full or partial)
  • Dust removal unit
  • Laser system is automated with micromachining software SCA.
    This software is an essential part of the laser system and is not sold separately.

Technical information

Technical specifications depend on individual requirements and needed tasks to implement. It may vary in the range listed below.

Parameter Value
Pulse duration 200 fs – 10 ps
Repetition rate 1 kHz – 1 MHz
Average power Up to 20W
Pulse energy Up to 2 mJ
Wavelength 1030 nm, 515 nm, 343 nm, 258 nm, 206 nm
Positioning accuracy ± 250 nm
Travel range From 25×25 mm to 300×300 mm (larger on request)

Download document

Looking for services instead?

If you are not ready for a workstation but need work to be done, we can help you out!

Check our services and contact us – we will give a solution.

Our services

References

  1. Mazule; S. Liukaityte; V. Sabonis; T. Gertus; M. Mikutis, et al. “Characterization of the optical components fabricated by femtosecond pulses in transparent materials”, Proc. SPIE 8839, Dimensional Optical Metrology and Inspection for Practical Applications II, 883909 (September 6, 2013); doi:1117/12.2022823
  2. Adomavičiūtė; T. Tamulevičius; L. Šimatonis; E. Fataraitė-Urbonienė; E. Stankevičius; S. Tamulevičius, “Microstructuring of electrospun mats employing femtosecond laser”, ISSN 1392–1320 Materials Science (Medžiagotyra), Vol. 21, No. 1. 2015; doi:http://dx.doi.org/10.5755/j01.ms.21.1.10249
  3. Malinauskas; S. Rekštytė; L. Lukoševičius; S. Butkus; E. Balčiūnas; M. Pečiukaitytė; D. Baltriukienė; V. Bukelskienė; A. Butkevičius; P. Kucevičius; V. Rutkūnas; S. Juodkazis, “3D Microporous Scaffolds Manufactured via Combination of Fused Filament Fabrication and Direct Laser Writing Ablation” Micromachines 2014, 5, 839-858; doi:3390/mi5040839
  4. Gertus; A. Michailovas; K. Michailovas and V. Petrauskienė “Laser beam shape converter using spatially variable waveplate made by nanogratings inscription in fused silica”, Proc. SPIE 9343, Laser Resonators, Microresonators, and Beam Control XVII, 93431S (March 3, 2015); doi:1117/12.2075869
  5. Mačiulaitis; M. Deveikytė; S. Rekštytė; M. Bratchikov; A. Darinskas; A. Šimbelytė; G. Daunoras; A. Laurinavičienė; A. Laurinavičius, R. Gudas; M. Malinauskas; R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography”, Biofabrication, 2015 Mar 23; 7(1):015015; doi:1088/1758-5090/7/1/015015
  6. Nava; R. Osellame; R. Ramponi; and K. Chaitanya Vishnubhatla; “Scaling of black silicon processing time by high repetition rate femtosecond lasers,” Opt. Mater. Express 3, 612-623 (2013). doi:1364/OME.3.000612
  7. Daeichin et al.; “A Broadband Polyvinylidene Difluoride-Based Hydrophone with Integrated Readout Circuit for Intravascular Photoacoustic Imaging”, Ultrasound in Medicine and Biology , Volume 42 , Issue 5 , 1239 – 1243 (2016). doi:http://dx.doi.org/10.1016/j.ultrasmedbio.2015.12.016 
  8. Bruzauskaite et al.; “Relevance of HCN2-expressing human mesenchymal stem cells for the generation of biological pacemakers,” Stem Cell Research & Therapy, 7:67 (2016). doi:10.1186/s13287-016-0326-z
  9. W. Wang et al.; “Laser structuring for control of coupling between THz light and phonon modes”, arXiv:1605.04493 (2016). doi:arXiv:1605.04493
  10. Tamulevičius, L. Šimatonis, O. Ulčinas, S. Tamulevičius, E. Žukauskas, R. Rekuvienė, L. Mažeika et al. “Micromachining and validation of the scanning acoustic microscope spatial resolution and sensitivity calibration block for 20–230 MHz frequency range”, Microscopy (Oxf) Volume 65 (5), 429-437 (2016). doi:https://doi.org/10.1093/jmicro/dfw027
  11. Ksenia Maximova, Xuewen Wang, Armandas Balčytis, Linpeng Fan, Jingliang Li, and Saulius Juodkazis at al. “Silk patterns made by direct femtosecond laser writing”, Biomicrofluidics 10 (5), 054101 (2016). doi: http://dx.doi.org/10.1063/1.4962294
  12. Xuewen Wang, Aleksandr Kuchmizhak, Etienne Brasselet, Saulius Juodkazis, et al. “Dielectric geometric phase optical elements from femtosecond direct laser writing”, arXiv:1612.04487 (2016). doi:https://arxiv.org/abs/1612.04487
  13. W. Wang, A. A. Kuchmizhak, X. Li, S. Juodkazis, O. B. Vitrik, Yu.N. Kulchin, V. V. Zhakhovsky, P. A. Danilov, A. A. Ionin, S. I. Kudryashov, A.A. Rudenko, N. A. Inogamov at al. “Laser-induced Translative Hydrodynamic Mass Snapshots: mapping at nanoscale”, arXiv:1703.06758 (2017). doi:http://arXiv:1703.06758
Contact us

Send us a message

  • Don't hesitate to ask, we usually reply in 24 hours or less!
  • This field is for validation purposes and should be left unchanged.
Contact
information

WORKSHOP OF PHOTONICS
Mokslininku st. 6A, Vilnius, LT-08412, Lithuania

Phone: +370 5 215 7551
E-mail: [email protected]

Company details

Altechna R&D, UAB
Company code 301502628
VAT code LT100006155012
Bank – SEB 70440
LT87 7044 0600 0770 8092