S-Waveplate Radial polarization converter

S-waveplate converts linear polarization to radial or azimuthal polarization and circular polarization to an optical vortex.

Main features

  • Converts linear polarization to radial or azimuthal polarization.
  • Converts circular polarization to an optical vortex.
  • High 94% transmission @ 1030 nm (no AR coating).
  • Stand-alone – no additional optical elements needed.
  • High damage threshold: 63,4 J/cm² @1064 nm, 10 ns and 2,2 J/cm² @1030 nm, 212 fs.
  • Suitable for high LIDT applications and high-power lasers.
  • Reliable and resistant surface – the structure is inside the bulk.

Why choose s-waveplate?

  • 94% transmission
    @ 1030 nm (no AR coating)
  • High damage threshold
    63.4 J/cm² @ 1064 nm
  • Topological charges
    from 1 to 100
  • Wavelength
    from 257 to 4000 nm
  • Large aperture
    up to 15 mm
  • Reliable & resistant surface
    the structure is inside the bulk

Detailed description

Fabrication of S-waveplate is based on the inscription of self-organized nanograting’s inside fused silica glass using a femtosecond laser.

Beams with radial or azimuthal polarization attract significant interest due to unique optical properties associated with their inherent symmetry. Such beams enable resolution below the diffraction limit and interact without the undesirable anisotropy produced by linearly polarized light.

S-waveplate can be beneficial in polarization-sensitive applications. For example, a radially polarized beam is more efficient at drilling and cutting high-aspect-ratio features in metals. Vector beams are also applicable in optical tweezers, laser micromachining, STED microscopy, and two-photon-excitation fluorescence microscopy.

Acknowledgment. Enabling technology was developed by Prof. Peter G. Kazansky’s group in the Optoelectronics Research Centre at the University of Southampton. Southampton University has applied for patent application and appointed exclusivity in commercializing activities for Workshop of Photonics (Altechna R&D Ltd.).

Technical features

  • High damage threshold | LIDT – 63.4 J/cm² @ 1064 nm, 10 ns; 2.2 J/cm² @ 1030 nm, 212 fs
  • High transmission (no AR coating) – 94% @ 1030 nm, 92% @ 515 nm, 85% @ 343 nm of most SS lasers
  • Large aperture possible – up to 15 mm
  • Topological charges from 1 to 100
  • Wavelength from 257 to 4000 nm

Our customers

Main benefits

  • Allows focusing into smaller spot size (using NA > 0.9)
  • Ensures the same machining properties in all directions
  • Ensures the same cutting speed in all directions
  • Enable ring-shaped intensity distribution in focus (at NA <0.8)
  • Increases cutting speed
  • Suitable for high LIDT applications
  • Suitable for high power lasers

Application examples

  • STED microscopy
  • Micromachining
  • Micro drilling high-aspect-ratio channels
  • Generate any cylindrical vector vortex
  • Multiple particle trapping
  • Micro-mill is driven by optical tweezers
  • Use as an intracavity polarization-controlling element in cladding-pumped ytterbium-doped fiber laser for radially polarized output beam generation

Application example

Radial polarization used with high NA > 0.9 (numerical aperture) allows focusing into a smaller spot size comparing with limits described by diffraction.

Methods of use

Universal approach
Cylindrically symmetric polarization (radial or azimuthal) generation

  1. Mount a λ/2 waveplate into a kinematic holder.
  2. Place the radial polarization converter into the path of the linearly polarized beam.
  3. Align the center of the converter with the optical axis of the incident laser beam.
  4. Check the alignment with the linear polarizer placed after the converter. The dumbbell shape must be symmetric for all polarizer angles.
  5. Polarization state (radial/azimuthal) of the output beam can be controlled by rotating the converter or the incident polarization (by rotating λ/2 waveplate).


Simplified approach
Cylindrically symmetric polarization (radial or azimuthal) generation

  1. Place the radial polarization converter directly into the linearly polarized laser beam.
  2. Align the center of the converter with the optical axis of the incident laser beam.
  3. Check the alignment with the linear polarizer placed after the converter. The dumbbell shape must be symmetric for all polarizer angles.
  4. The polarization state of the output beam can be controlled by rotating the converter or the incident polarization (by rotating λ/2 waveplate placed before converter).


  1. Baltrukonis, J., Ulčinas, O., Orlov, S., & Jukna, V. (2020). Void and micro-crack generation in transparent materials with high-energy first-order vector Bessel beam. JOSA B37(7), 2121-2127.
  2. Rudolf Weber, Andreas Michalowski, Marwan Abdou-Ahmed, Volkher Onuseit, Volker Rominger, Martin Kraus, Thomas Graf, “Effects of Radial and Tangential Polarization in Laser Material Processing”, Physics Procedia, Volume 12, Part A, (2011), Pages 21-30. doi:10.1016/j.phpro.2011.03.004
  3. Cyril Hnatovsky, Vladlen Shvedov, Wieslaw Krolikowski, and Andrei Rode, “Revealing Local Field Structure of Focused Ultrashort Pulses”, Phys. Rev. Lett. 106, 123901 (2011). doi:http://dx.doi.org/10.1103/PhysRevLett.106.123901 
  4. Yao Bao-Li, Yan Shao-Hui, Ye Tong and Zhao Wei, “Optical Trapping of Double-Ring Radially Polarized Beam with Improved Axial Trapping Efficiency”, Chinese Phys. Lett. 27 108701, (2010). doi:http://dx.doi.org/10.1088/0256-307X/27/10/108701
  5. Hong Kang, Baohua Jia, Jingliang Li, Dru Morrish, and Min Gu, “Enhanced photothermal therapy assisted with gold nanorods using a radially polarized beam”, Appl. Phys. Lett. 96, 063702 (2010). doi:http://dx.doi.org/10.1063/1.3302461
  6. Gilad M. Lerman and Uriel Levy, “Radial polarization interferometer”, Opt. Express 17, 23234-23246 (2009). doi:10.1364/OE.17.023234
  7. Fake Lu, Wei Zheng, and Zhiwei Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light”, Opt. Lett. 34, 1870-1872 (2009). doi:10.1364/OL.34.001870
  8. Weibin Chen, Don C. Abeysinghe, Robert L. Nelson§ and Qiwen Zhan, “Plasmonic Lens Made of Multiple Concentric Metallic Rings under Radially Polarized Illumination”, Nano Lett., 2009, 9 (12), pp 4320–4325. doi:10.1021/nl903145p
  9. Gilad M. Lerman and Uriel Levy, “Effect of radial polarization and apodization on spot size under tight focusing conditions”, Opt. Express 16, 4567-4581 (2008). doi:10.1364/OE.16.004567
  10. D. W. Diehl, R. W. Schoonover, and T. D. Visser, “The structure of focused, radially polarized fields”, Opt. Express 14, 3030-3038 (2006). doi:10.1364/OE.14.003030
  11. Tasso R. M. Sales, “Smallest Focal Spot”, Phys. Rev. Lett. 81, 3844–3847 (1998). doi:http://dx.doi.org/10.1103/PhysRevLett.81.3844
  12. A. V. Nesterov, V. G. Niz’ev and A. L. Sokolov , “Transformation problem for radiation with radial polarization”, Volume 90, Number 6 (2001). doi:10.1134/1.1380793
  13. O J Allegre et al, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses” , J. Opt. 14 085601, (2012). doi:http://dx.doi.org/10.1088/2040-8978/14/8/085601 
  14. M. Kraus, M. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization”, Opt. Express 18, 22305-22313 (2010). doi:http://dx.doi.org/10.1364/OE.18.022305 
  15. M.Gecevičius, R.Drevinskas, M.Beresna and Peter G. Kazansky “Single beam optical vortex tweezers with tunable orbital angular momentum”, Appl. Phys. Lett. 104, 231110 (2014). doi:http://dx.doi.org/10.1063/1.4882418
  16. Di Lin, J. M. O. Daniel, M. Gecevičius, M. Beresna, P. G. Kazansky, and W. A. Clarkson “Cladding-pumped ytterbium-doped fiber laser with radially polarized output”, Optics Letters Vol. 39, Iss. 18, pp. 5359–5361 (2014). doi:http://dx.doi.org/10.1364/OL.39.005359
  17. Y Liu, X Ling, X Yi, X Zhou, S Chen, Y Ke, H Luo, S Wen, “Photonic spin Hall effect in metasurfaces with rotational symmetry-breaking”, arXiv preprint arXiv:1407.6088 (2014). doi:http://dx.doi.org/10.1364/OL.40.000756
  18. X Yi, X Ling, Z Zhang, Y Li, X Zhou, Y Liu, S Chen, H Luo, S Wen, “Generation of cylindrical vector vortex beams by two cascaded metasurfaces”, Optics Express 22, 17207-17215 (2014). doi:http://dx.doi.org/10.1364/OE.22.017207
  19. Y Liu, X Ling, X Yi, X Zhou, H Luo, S Wen, “Realization of polarization evolution on higher-order Poincaré sphere with metasurface”, Applied Physics Letters 104 (19), 191110 (2014). doi:http://dx.doi.org/10.1063/1.4878409
  20. Gong, Lei, et al. “Generation of cylindrically polarized vector vortex beams with digital micromirror device” Journal of Applied Physics 116.18 (2014). doi:http://dx.doi.org/10.1063/1.4901574
  21. Zihao Rong, Cuifang Kuang, Yue Fang, Guangyuan Zhao, Yingke Xu, Xu Liu, “Super-resolution microscopy based on fluorescence emission difference of cylindrical vector beams”, Optics Communications (2015). doi:http://dx.doi.org/10.1016/j.optcom.2015.05.057 
  22. Mateusz A. Tyrk, Svetlana A. Zolotovskaya, W. Allan Gillespie, and Amin Abdolvand, “Radially and azimuthally polarized laser induced shape transformation of embedded metallic nanoparticles in glass,” Opt. Express 23, 23394-23400 (2015). doi:http://dx.doi.org/10.1364/OE.23.023394 
  23. Xunong Yi, Ying Li, Xiaohui Ling, Yachao Liu, Yougang Ke, Dianyuan Fan, “Addition and subtraction operation of optical orbital angular momentum with dielectric metasurfaces”, Optics Communications, Volume 356, 456-462 (2015). doi:http://dx.doi.org/10.1016/j.optcom.2015.08.011
  24. Guzman-Silva, Diego, et al. “Demonstration of local teleportation using classical entanglement” arXiv:1509.06217 (2015). doi:http://arxiv.org/abs/1509.06217
  25. Yu-Xuan Ren et al. “Tailoring light with a digital micromirror device”, Annalen der Physik Volume 527Issue 7-8,  pages 447–470August (2015). doi: 10.1002/andp.201500111 
  26. Hong Ji et al. “Microstructured suspended core fiber for cylindrical vector beams propagation” CLEO: 2015, OSA Technical Digest (online), Optical Society of America, (2015). doi: 10.1364/CLEO_SI.2015.STu4L.5
  27. Aidas Matijošius et al. “Formation of second order optical vortices with a radial polarization converter using the double-pass technique”, Optics Communications, Volume 349, Pages 24–30, (2015). doi: 10.1016/j.optcom.2015.03.036 
  28. Wenjing Zhang et al. “Robust sky light polarization detection with an S-wave plate in a light field camera” Applied Optics Vol. 55, Issue 13, pp. 3518-3525 (2016). doi: 10.1364/AO.55.003518
  29. Evangelos Skoulas, Alexandra Manousaki, Costas Fotakis and Emmanuel Stratakis, et al. “Biomimetic surface structuring using cylindrical vector femtosecond laser beams” arXiv:1611.03360 (2016). doi:http://arxiv.org/abs/1611.03360
  30. Gang Chen, Zhi-xiang Wu, An-ping Yu, Zhi-hai Zhang, Zhong-quan Wen, Kun Zhang, Lu-ru Dai, Sen-lin Jiang, Yu-yan Li, Li Chen, Chang-tao Wang & Xian-gang Luo, “Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave”, Sci. Rep. 6, 37776 (2016). doi:10.1038/srep37776
  31. Junxiao Zhou, Yachao Liu, Yougang Ke, Yuanyuan Liu, Hailu Luo, et al. “Spin-photonic devices based on optical integration of Pancharatnam-Berry phase elements”, Proc. SPIE, Volume 9931, Spintronics IX, 99310F (2016). doi:http://dx.doi.org/10.1117/12.2236459
  32. Chao Wang, Lun Jiang, Yuan Hu, Zhuang Liu, Ying-chao Li, et al. “Superresolution far-field diffraction spot in the free-space laser communication system due to radially polarized beam”, Proc. SPIE, Volume 10158, Optical Communication, Optical Fiber Sensors, and Optical Memories for Big Data Storage, 101580K (2016). doi:http://dx.doi.org/10.1117/12.2246624
  33. Guadalupe López-Morales, Victor-Manuel Rico-Botero, Rafael Espinosa-Luna, and Qiwen Zhan, “Refractive index measurement of dielectric samples using highly focused radially polarized light (Invited Paper)”, Chin. Opt. Lett. 15, 030004- (2017). doi:10.3788/COL201715.030004
  34. Zhenxing Liu, Yuanyuan Liu, Yougang Ke, Yachao Liu, Weixing Shu, Hailu Luo, and Shuangchun Wen, “Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere,” Photonics Research, Volume 5, 15-21 (2017). doi:https://doi.org/10.1364/PRJ.5.000015
  35. Yachao Liu, Yougang Ke, Junxiao Zhou, Yuanyuan Liu, Hailu Luo, Shuangchun Wen, Dianyuan Fan, “Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements”, arXiv:1702.00946 (2017). doi:http://arxiv.org/abs/1702.00946
Contact us

Send us Your question or inquiry

  • Don't hesitate to ask, we usually reply in 24 hours or less!
  • This field is for validation purposes and should be left unchanged.


Mokslininku st. 6A, Vilnius, LT-08412, Lithuania

Phone: +370 5 215 7551
E-mail: [email protected]

Company details

Altechna R&D, UAB
Company code 301502628
VAT code LT100006155012
Bank – SEB 70440
LT87 7044 0600 0770 8092