Laser Micromachining System For Laboratory FemtoLAB

  • Laser micromachining system FemtoLAB
  • Laser micromachining system FemtoLAB-kit
  • Laser micromachining system FemtoLAB
  • Laser micromachining system FemtoLAB

Laser micromachining system for laboratory FemtoLAB is the best solution for scientific laboratories. Equipped with high accuracy linear positioning stages, high performance galvanometer scanners and versatile micromachining software SCA, FemtoLAB becomes an entire laser laboratory on an optical table.

Applications:
  • Surface micro and nano structuring
  • Engraving
  • Drilling
  • Laser litography and multiphoton polymerization
  • Refractive index modification inside bulk of material
  • Selective layer removal
  • Cutting brittle materials
  • Waveguide fabrication
  • Another task development and implementing available on request

Femtosecond laser system FemtoLAB is a perfect choice for scientific laboratories requiring custom solutions for various tasks. Our technical competences and application experience allows to optimize FemtoLAB system to save precious experiment time and facilitate training of new users. This is very important for scientific laboratories having several and sometimes tens of researchers.

Laser micromachining system FemtoLAB features: 
  • High speed precision micromachining
  • High-end industrial grade femtosecond laser
  • Fabrication of difficult objects with submicron resolution
  • Minimal heat affected zone in femtosecond micromachining mode
  • Nanometer accuracy object positioning
  • Precise laser beam guiding using galvanometer scanners
  • Convenient change of laser parameters
  • Original software interface for control of all integrated hardware devices

Proven flexibility of femtosecond laser micromachining system for laboratory femtoLAB allows to further expand and upgrade system when new requirements arise.

Technical specifications of femtosecond laser micromachining system FemtoLAB depends on requirements of the end user and tasks needed to be implemented. It may vary in the range listed below.

Parameter Value 
Pulse duration 200 fs – 10 ps
Repetition rate 1 kHz – 1 MHz
Average power Up to 20W
Pulse energy Up to 2 mJ
Wavelength 1030 nm, 515 nm, 343 nm, 258 nm, 206 nm
Positioning accuracy ± 250 nm
Travel range From 25×25 mm to 300×300 mm (larger on request)
Main components:
  • Laser source
  • Sample positioning system
  • Beam delivery and scanning unit
  • Laser power and polarization control
  • Software for system control (autofocusing and mashine vision on request)
  • Sample holders and special mechanics (sample handling automation on request)
  • Optical table
  • Enclosure (full or partial)
  • Dust removal unit

Laser system is automated with micromachining software SCA. This software is essential part of laser system and is not sold separately.

 

  1. Mazule; S. Liukaityte; V. Sabonis; T. Gertus; M. Mikutis, et al. “Characterization of the optical components fabricated by femtosecond pulses in transparent materials”, Proc. SPIE 8839, Dimensional Optical Metrology and Inspection for Practical Applications II, 883909 (September 6, 2013); doi:10.1117/12.2022823
  2. Adomavičiūtė; T. Tamulevičius; L. Šimatonis; E. Fataraitė-Urbonienė; E. Stankevičius; S. Tamulevičius, “Microstructuring of electrospun mats employing femtosecond laser”, ISSN 1392–1320 Materials Science (Medžiagotyra), Vol. 21, No. 1. 2015; doi:http://dx.doi.org/10.5755/j01.ms.21.1.10249
  3. Malinauskas; S. Rekštytė; L. Lukoševičius; S. Butkus; E. Balčiūnas; M. Pečiukaitytė; D. Baltriukienė; V. Bukelskienė; A. Butkevičius; P. Kucevičius; V. Rutkūnas; S. Juodkazis, “3D Microporous Scaffolds Manufactured via Combination of Fused Filament Fabrication and Direct Laser Writing Ablation” Micromachines 2014, 5, 839-858; doi:10.3390/mi5040839
  4. Gertus; A. Michailovas; K. Michailovas and V. Petrauskienė “Laser beam shape converter using spatially variable waveplate made by nanogratings inscription in fused silica”, Proc. SPIE 9343, Laser Resonators, Microresonators, and Beam Control XVII, 93431S (March 3, 2015); doi:10.1117/12.2075869
  5. Mačiulaitis; M. Deveikytė; S. Rekštytė; M. Bratchikov; A. Darinskas; A. Šimbelytė; G. Daunoras; A. Laurinavičienė; A. Laurinavičius, R. Gudas; M. Malinauskas; R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography”, Biofabrication, 2015 Mar 23; 7(1):015015; doi:10.1088/1758-5090/7/1/015015
  6. Nava; R. Osellame; R. Ramponi; and K. Chaitanya Vishnubhatla; “Scaling of black silicon processing time by high repetition rate femtosecond lasers,” Opt. Mater. Express 3, 612-623 (2013). doi:10.1364/OME.3.000612
  7. V. Daeichin et al.; “A Broadband Polyvinylidene Difluoride-Based Hydrophone with Integrated Readout Circuit for Intravascular Photoacoustic Imaging”, Ultrasound in Medicine and Biology , Volume 42 , Issue 5 , 1239 – 1243 (2016). doi:http://dx.doi.org/10.1016/j.ultrasmedbio.2015.12.016 
  8. I. Bruzauskaite et al.; “Relevance of HCN2-expressing human mesenchymal stem cells for the generation of biological pacemakers,” Stem Cell Research & Therapy, 7:67 (2016). doi:10.1186/s13287-016-0326-z 
  9. X. W. Wang et al.; “Laser structuring for control of coupling between THz light and phonon modes”, arXiv:1605.04493 (2016). doi:arXiv:1605.04493
  10. T. Tamulevičius, L. Šimatonis, O. Ulčinas, S. Tamulevičius, E. Žukauskas, R. Rekuvienė, L. Mažeika et al. “Micromachining and validation of the scanning acoustic microscope spatial resolution and sensitivity calibration block for 20–230 MHz frequency range”, Microscopy (Oxf) Volume 65 (5), 429-437 (2016). doi:https://doi.org/10.1093/jmicro/dfw027
  11. Ksenia Maximova, Xuewen Wang, Armandas Balčytis, Linpeng Fan, Jingliang Li, and Saulius Juodkazis at al. “Silk patterns made by direct femtosecond laser writing”, Biomicrofluidics 10 (5), 054101 (2016). doi: http://dx.doi.org/10.1063/1.4962294
  12. Xuewen Wang, Aleksandr Kuchmizhak, Etienne Brasselet, Saulius Juodkazis, et al. “Dielectric geometric phase optical elements from femtosecond direct laser writing”, arXiv:1612.04487 (2016). doi:https://arxiv.org/abs/1612.04487
  13. X. W. Wang, A. A. Kuchmizhak, X. Li, S. Juodkazis, O. B. Vitrik, Yu.N. Kulchin, V. V. Zhakhovsky, P. A. Danilov, A. A. Ionin, S. I. Kudryashov, A.A. Rudenko, N. A. Inogamov at al. “Laser-induced Translative Hydrodynamic Mass Snapshots: mapping at nanoscale”, arXiv:1703.06758 (2017). doi:http://arXiv:1703.06758

If you are interested in our product or have questions – feel free to contact us via contact form below: 

Your Name: *

Your E-Mail: *

Company Name:

Your Message: *