S-waveplate (Radial Polarization Converter)

  • Radial polarization converter S-waveplate
  • Radial polarization converter S-waveplate

S-waveplate is a super-structured space-variant waveplate which converts linear polarization to azimuthal or radial polarization, and circular polarization to optical vortex.

Category:

Radial polarization converter S-waveplate is the most common availabe space-variant waveplate. Fabrication of S-waveplate is based on inscription of self-organized nanogratings inside fused silica glass using a femtosecond laser.

Radial polarization converter features:
  • Converts linear polarization to radial polarization or azimuthal
  • Converts circular polarization to optical vortex
  • High damage threshold
  • 55-90% transmission (wavelength dependent)
  • Large aperture (up to 15 mm; standard is 6 mm)
  • Continuous pattern – no segments
Applications:
  • STED microscopy (ref. No. 20)
  • Micromachining (ref. No. 1, 2, 12)
  • Microdrilling high-aspect-ratio channels (ref. No. 13)
  • Generate any cylindrical vector vortex (ref. No. 17)
  • Multiple particle trapping (ref. No. 14). Video link
  • Micro-mill driven by optical tweezers (ref. No. 14). Video link
  • Use as intracavity polarization-controlling element in cladding-pumped ytterbium doped fiber laser for radially polarized output beam generation (ref. No. 15)
  • Observation of photonic spin Hall effect with rotational symmetry breaking (ref. No. 16)
  • Realization of polarization evolution on higher-order Poincaré sphere (ref. No. 18)
  • Direct transformation of linearly polarized Gaussian beam into vector-vortex beams with various spatial patterns (ref. No. 19)
  • Engineering of novel optical materials for applications in security and data storage with highly improved marking capacity due to fine nanoparticle position control (ref. No. 21)
  • Addition and subtraction of optical orbital angular momentum (ref. No. 22)
  • Hybrid classical-quantum communication (ref. No. 23)
Acknowledgment

Southampton University applied for patent application and appointed exclusivity in commercializing activities for Altechna R&D Ltd. Custom development of machining heads and optical assemblies incorporating the radial/azimuthal polarizer is possible on request.

Cylindrically symmetric polarization (radial or azimuthal) generation

Following step-by-step procedure must be done in order to generate radial or azimuthal polarization beams.

Simplified approach
  1. Place the radial polarization converter directly into linearly polarized laser beam.
  2. Align the center of the converter with the optical axis of the incident laser beam.
  3. Check the alignment with linear polarizer placed after converter. The dumbbell shape must be symmetric for all polarizer angles.
  4. Polarization state of the output beam can be controlled by rotating the converter or the incident polarization (by rotating λ/2 waveplate placed before converter).
Universal approach
  1. Mount a λ/2 waveplate into a kinematic holder
  2. Place the radial polarization converter into the path of linearly polarized beam
  3. Align the center of the converter with the optical axis of the incident laser beam
  4. Check the alignment with linear polarizer placed after converter. The dumbbell shape must be symmetric for all polarizer angles
  5. Polarization state (radial/azimuthal) of the output beam can be controlled by rotating the converter or the incident polarization (by rotating λ/2 waveplate).
Optical Vortex Generation Using Radial Polarization Converter

Following step-by-step procedure must be done in order to generate optical vortex beam using radial converter.

Simplified approach
  1. Place the radial polarization converter into circularly polarized laser beam.
  2. Align the center of the converter with the optical axis of the incident laser beam.

Note: The sign of the optical vortex charge „+“, „-“ is controlled by the handedness of the incident circular polarization.

Product Operation wavelength Transmission Clear Aperture, mm Price Price (Qty >1 pcs.)
RPC-488-02 488 nm ±15 nm >40 % 2 800 Eur Contact seller
RPC-488-04 488 nm ±15 nm >40 % 4 1000 Eur Contact seller
RPC-488-06 488 nm ±15 nm >40 % 6 1400 Eur Contact seller
RPC-488-08 488 nm ±15 nm >40 % 8 1600 Eur Contact seller
RPC-488-10 488 nm ±15 nm >40 % 10 2200 Eur Contact seller
RPC-488-15 488 nm ±15 nm >40 % 15 4000 Eur Contact seller
RPC-515-02 515 nm ±20 nm >45 % 2 800 Eur Contact seller
RPC-515-04 515 nm ±20 nm >45 % 4 1000 Eur Contact seller
RPC-515-06 515 nm ±20 nm >45 % 6 1400 Eur Contact seller
RPC-515-08 515 nm ±20 nm >45 % 8 1600 Eur Contact seller
RPC-515-10 515 nm ±20 nm >45 % 10 2200 Eur Contact seller
RPC-515-15 515 nm ±20 nm >45 % 15 4000 Eur Contact seller
RPC-632-02 632 nm ±20 nm > 50 % 2 800 Eur Contact seller
RPC-632-04 632 nm ±20 nm > 50 % 4 1300 Eur Contact seller
RPC-632-06 632 nm ±20 nm > 50 % 6 2000 Eur Contact seller
RPC-632-08 632 nm ±20 nm > 50 % 8 2600 Eur Contact seller
RPC-632-10 632 nm ±20 nm > 50 % 10 4000 Eur Contact seller
RPC-632-15 632 nm ±20 nm > 50 % 15 6500 Eur Contact seller
RPC-800-02 800 nm ±25 nm > 55 % 2 900 Eur Contact seller
RPC-800-04 800 nm ±25 nm > 55 % 4 1300 Eur Contact seller
RPC-800-06 800 nm ±25 nm > 55 % 6 2000 Eur Contact seller
RPC-800-08 800 nm ±25 nm > 55 % 8 2600 Eur Contact seller
RPC-800-10 800 nm ±25 nm > 55 % 10 4000 Eur Contact seller
RPC-800-15 800 nm ±25 nm > 55 % 15 6500 Eur Contact seller
RPC-1030-02 1030 nm ±35 nm >65 % 2 900 Eur Contact seller
RPC-1030-04 1030 nm ±35 nm >65 % 4 1300 Eur Contact seller
RPC-1030-06 1030 nm ±35 nm >65 % 6 2000 Eur Contact seller
RPC-1030-08 1030 nm ±35 nm >65 % 8 2600 Eur Contact seller
RPC-1030-10 1030 nm ±35 nm >65 % 10 4000 Eur Contact seller
RPC-1030-15 1030 nm ±35 nm >65 % 15 6500 Eur Contact seller
RPC-1550-02 1550 nm ±40 nm >75 % 2 1000 Eur Contact seller
RPC-1550-04 1550 nm ±40 nm >75 % 4 1400 Eur Contact seller
RPC-1550-06 1550 nm ±40 nm >75 % 6 2500 Eur Contact seller
RPC-1550-08 1550 nm ±40 nm >75 % 8 4200 Eur Contact seller
RPC-1550-10 1550 nm ±40 nm >75 % 10 8000 Eur Contact seller
RPC-1550-15 1550 nm ±40 nm >75 % 15 10000 Eur Contact seller

  1. Rudolf Weber, Andreas Michalowski, Marwan Abdou-Ahmed, Volkher Onuseit, Volker Rominger, Martin Kraus, Thomas Graf, “Effects of Radial and Tangential Polarization in Laser Material Processing”, Physics Procedia, Volume 12, Part A, (2011), Pages 21-30. doi:10.1016/j.phpro.2011.03.004
  2. Cyril Hnatovsky, Vladlen Shvedov, Wieslaw Krolikowski, and Andrei Rode, “Revealing Local Field Structure of Focused Ultrashort Pulses”, Phys. Rev. Lett. 106, 123901 (2011). doi:http://dx.doi.org/10.1103/PhysRevLett.106.123901 
  3. Yao Bao-Li, Yan Shao-Hui, Ye Tong and Zhao Wei, “Optical Trapping of Double-Ring Radially Polarized Beam with Improved Axial Trapping Efficiency”, Chinese Phys. Lett. 27 108701, (2010). doi:http://dx.doi.org/10.1088/0256-307X/27/10/108701
  4. Hong Kang, Baohua Jia, Jingliang Li, Dru Morrish, and Min Gu, “Enhanced photothermal therapy assisted with gold nanorods using a radially polarized beam”, Appl. Phys. Lett. 96, 063702 (2010). doi:http://dx.doi.org/10.1063/1.3302461
  5. Gilad M. Lerman and Uriel Levy, “Radial polarization interferometer”, Opt. Express 17, 23234-23246 (2009). doi:10.1364/OE.17.023234
  6. Fake Lu, Wei Zheng, and Zhiwei Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light”, Opt. Lett. 34, 1870-1872 (2009). doi:10.1364/OL.34.001870
  7. Weibin Chen, Don C. Abeysinghe, Robert L. Nelson§ and Qiwen Zhan, “Plasmonic Lens Made of Multiple Concentric Metallic Rings under Radially Polarized Illumination”, Nano Lett., 2009, 9 (12), pp 4320–4325. doi:10.1021/nl903145p
  8. Gilad M. Lerman and Uriel Levy, “Effect of radial polarization and apodization on spot size under tight focusing conditions”, Opt. Express 16, 4567-4581 (2008). doi:10.1364/OE.16.004567
  9. D. W. Diehl, R. W. Schoonover, and T. D. Visser, “The structure of focused, radially polarized fields”, Opt. Express 14, 3030-3038 (2006). doi:10.1364/OE.14.003030
  10. Tasso R. M. Sales, “Smallest Focal Spot”, Phys. Rev. Lett. 81, 3844–3847 (1998). doi:http://dx.doi.org/10.1103/PhysRevLett.81.3844
  11. A. V. Nesterov, V. G. Niz’ev and A. L. Sokolov , “Transformation problem for radiation with radial polarization”, Volume 90, Number 6 (2001). doi:10.1134/1.1380793
  12. O J Allegre et al, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses” , J. Opt. 14 085601, (2012). doi:http://dx.doi.org/10.1088/2040-8978/14/8/085601 
  13. M. Kraus, M. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization”, Opt. Express 18, 22305-22313 (2010). doi:http://dx.doi.org/10.1364/OE.18.022305 
  14. M.Gecevičius, R.Drevinskas, M.Beresna and Peter G. Kazansky “Single beam optical vortex tweezers with tunable orbital angular momentum”, Appl. Phys. Lett. 104, 231110 (2014). doi:http://dx.doi.org/10.1063/1.4882418
  15. Di Lin, J. M. O. Daniel, M. Gecevičius, M. Beresna, P. G. Kazansky, and W. A. Clarkson “Cladding-pumped ytterbium-doped fiber laser with radially polarized output”, Optics Letters Vol. 39, Iss. 18, pp. 5359–5361 (2014). doi:http://dx.doi.org/10.1364/OL.39.005359
  16. Y Liu, X Ling, X Yi, X Zhou, S Chen, Y Ke, H Luo, S Wen, “Photonic spin Hall effect in metasurfaces with rotational symmetry-breaking”, arXiv preprint arXiv:1407.6088 (2014). doi:http://dx.doi.org/10.1364/OL.40.000756
  17. X Yi, X Ling, Z Zhang, Y Li, X Zhou, Y Liu, S Chen, H Luo, S Wen, “Generation of cylindrical vector vortex beams by two cascaded metasurfaces”, Optics Express 22, 17207-17215 (2014). doi:http://dx.doi.org/10.1364/OE.22.017207
  18. Y Liu, X Ling, X Yi, X Zhou, H Luo, S Wen, “Realization of polarization evolution on higher-order Poincaré sphere with metasurface”, Applied Physics Letters 104 (19), 191110 (2014). doi:http://dx.doi.org/10.1063/1.4878409
  19. Gong, Lei, et al. “Generation of cylindrically polarized vector vortex beams with digital micromirror device” Journal of Applied Physics 116.18 (2014). doi:http://dx.doi.org/10.1063/1.4901574
  20. Zihao Rong, Cuifang Kuang, Yue Fang, Guangyuan Zhao, Yingke Xu, Xu Liu, “Super-resolution microscopy based on fluorescence emission difference of cylindrical vector beams”, Optics Communications (2015). doi:http://dx.doi.org/10.1016/j.optcom.2015.05.057 
  21. Mateusz A. Tyrk, Svetlana A. Zolotovskaya, W. Allan Gillespie, and Amin Abdolvand, “Radially and azimuthally polarized laser induced shape transformation of embedded metallic nanoparticles in glass,” Opt. Express 23, 23394-23400 (2015). doi:http://dx.doi.org/10.1364/OE.23.023394 
  22. Xunong Yi, Ying Li, Xiaohui Ling, Yachao Liu, Yougang Ke, Dianyuan Fan, “Addition and subtraction operation of optical orbital angular momentum with dielectric metasurfaces”, Optics Communications, Volume 356, 456-462 (2015). doi:http://dx.doi.org/10.1016/j.optcom.2015.08.011
  23. Guzman-Silva, Diego, et al. “Demonstration of local teleportation using classical entanglement” arXiv:1509.06217 (2015). doi:http://arxiv.org/abs/1509.06217
  24. Yu-Xuan Ren et al. “Tailoring light with a digital micromirror device”, Annalen der Physik Volume 527, Issue 7-8pages 447–470, August (2015). doi: 10.1002/andp.201500111 
  25. Hong Ji et al. “Microstructured suspended core fiber for cylindrical vector beams propagation” CLEO: 2015, OSA Technical Digest (online), Optical Society of America, (2015). doi: 10.1364/CLEO_SI.2015.STu4L.5
  26. Aidas Matijošius et al. “Formation of second order optical vortices with a radial polarization converter using the double-pass technique”, Optics Communications, Volume 349, Pages 24–30, (2015). doi: 10.1016/j.optcom.2015.03.036 
  27. Wenjing Zhang et al. “Robust sky light polarization detection with an S-wave plate in a light field camera” Applied Optics Vol. 55, Issue 13, pp. 3518-3525 (2016). doi: 10.1364/AO.55.003518
  28. Evangelos Skoulas, Alexandra Manousaki, Costas Fotakis and Emmanuel Stratakis, et al. “Biomimetic surface structuring using cylindrical vector femtosecond laser beams” arXiv:1611.03360 (2016). doi:http://arxiv.org/abs/1611.03360
  29. Gang Chen, Zhi-xiang Wu, An-ping Yu, Zhi-hai Zhang, Zhong-quan Wen, Kun Zhang, Lu-ru Dai, Sen-lin Jiang, Yu-yan Li, Li Chen, Chang-tao Wang & Xian-gang Luo, “Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave”, Sci. Rep. 6, 37776 (2016). doi:10.1038/srep37776
  30. Junxiao Zhou, Yachao Liu, Yougang Ke, Yuanyuan Liu, Hailu Luo, et al. “Spin-photonic devices based on optical integration of Pancharatnam-Berry phase elements”, Proc. SPIE, Volume 9931, Spintronics IX, 99310F (2016). doi:http://dx.doi.org/10.1117/12.2236459
  31. Chao Wang, Lun Jiang, Yuan Hu, Zhuang Liu, Ying-chao Li, et al. “Superresolution far-field diffraction spot in the free-space laser communication system due to radially polarized beam”, Proc. SPIE, Volume 10158, Optical Communication, Optical Fiber Sensors, and Optical Memories for Big Data Storage, 101580K (2016). doi:http://dx.doi.org/10.1117/12.2246624
  32. Guadalupe López-Morales, Victor-Manuel Rico-Botero, Rafael Espinosa-Luna, and Qiwen Zhan, “Refractive index measurement of dielectric samples using highly focused radially polarized light (Invited Paper)”, Chin. Opt. Lett. 15, 030004- (2017). doi:10.3788/COL201715.030004
  33. Zhenxing Liu, Yuanyuan Liu, Yougang Ke, Yachao Liu, Weixing Shu, Hailu Luo, and Shuangchun Wen, “Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere,” Photonics Research, Volume 5, 15-21 (2017). doi:https://doi.org/10.1364/PRJ.5.000015
  34. Yachao Liu, Yougang Ke, Junxiao Zhou, Yuanyuan Liu, Hailu Luo, Shuangchun Wen, Dianyuan Fan, “Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements”, arXiv:1702.00946 (2017). doi:http://arxiv.org/abs/1702.00946

If you are interested in our product or have questions – feel free to contact us via contact form below:

Your Name: *

Your E-Mail: *

Company Name:

Your Message: *